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Abstract 
 

Algorithm visualization (AV) technology graphically illustrates how algorithms work. Despite the intuitive 

appeal of the technology, it has failed to catch on in mainstream computer science education. Some have at-

tributed this failure to the mixed results of experimental studies designed to substantiate AV technology’s 

educational effectiveness. However, while several integrative reviews of AV technology have appeared, 

none has focused specifically on the software’s effectiveness by analyzing this body of experimental studies 

as a whole.  In order to better understand the effectiveness of AV technology, we present a systematic meta-

study of 24 experimental studies. We pursue two separate analyses:  an analysis of independent variables, 

in which we tie each study to a particular guiding learning theory in an attempt to determine which guiding 

theory has had the most predictive success; and an analysis of dependent variables, which enables us to de-

termine which measurement techniques have been most sensitive to the learning benefits of AV technology. 

Our most significant finding is that how students use AV technology has a greater impact on effectiveness 

than what AV technology shows them. Based on our findings, we formulate an agenda for future research 

into AV effectiveness.   
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1. Introduction 

BY GRAPHICALLY representing computer algorithms in action, algorithm visualization (AV) technology aims to 

help computer science students understand how algorithms work.  Since its advent in the late 1970s, AV technology 

has evolved from batch-oriented software that enable instructors to construct animated films [1]; to highly-interactive 

systems that enable students to explore dynamically-configurable animations of algorithms on their own (e.g., [2, 3]); 

to interactive programming environments that enable students to quickly construct their own visualizations (e.g., [4, 

5]).  Over the past two decades, this evolution of software has endeavored to enhance computer science education in 

a variety of capacities. For example, AV software has been used 

• to help instructors illustrate algorithm operations in a lecture (e.g., [2]); 

• to help students as they study and learn about fundamental algorithms in a computer science course(e.g., 

[6]); 

• to help instructors track down bugs in students’  linked-list programs during office hours (e.g., [7]); and 

• to help students learn about the basic operations of an abstract data type in a computer science laboratory 

(e.g., [8]). 

Despite its intuitive appeal as a pedagogical aid, algorithm visualization technology has failed to catch on in 

mainstream computer science education [4, 9].  While those few educators who are also AV technology developers 

tend to employ their own AV technology, the majority of computer science educators tend to stick to more traditional 

pedagogical technologies, such as blackboards, whiteboards, and overhead projectors.   

Why do computer science educators tend not to use AV technology?  Instructors commonly cite several rea-

sons, including: 

• They feel they do not have the time to learn about it. 

• They feel that using it would take away time needed for other class activities. 

• They feel that creating visualizations for classroom use requires too much time and effort.  Note that, in the 

AV technology literature, this reason is frequently used to motivate new technology that is easier to use, and 

that supports the more rapid creation of visualizations (see, e.g., [10-12]).   

• They feel that it is simply not educationally effective.   
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All of these reasons certainly contribute, in some way, to AV technology’s failure to be adopted. However, the 

fourth reason—that AV technology does not help students learn algorithms better than conventional teaching meth-

ods—stands out as particularly important. Indeed, the underlying purpose of AV technology is to be educationally 

effective, so there certainly is no reason to adopt the technology if it is not effective.  

Given that the underlying purpose of AV technology is to be educationally effective, it is noteworthy that eight 

extant taxonomic reviews of AV and software visualization technology (see Table 1) have focused largely on system 

expressiveness.  In particular, these taxonomies have focused on three main questions:   

(1) What kinds of programs can be visualized with a given visualization system? 

(2) What kinds of visualizations can a given visualization system produce? 

(3) What methods can one use to produce and interact with visualizations?   

Notably, in focusing on system expressiveness, these integrative reviews of AV technology have largely ig-

nored a substantial body of over 20 experimental studies that have attempted to substantiate the educational value of 

AV technology.  A casual review of these studies suggests that their results have been, as Gurka [7] aptly puts it, 

“markedly mixed.”   Indeed, while some of the studies have demonstrated a pedagogical advantage for students using 

AV technology (e.g., [13, 14]), others have found either (a) no advantage at all (e.g., [15], [16], ch. 2), or (b) an ad-

vantage that can be only partially attributed to AV technology  (e.g., [17]). 

While computer science educators and technology critics tend to view the “markedly mixed”  results of these 

studies as a reason not to adopt AV technology, we believe that, if we are willing to look below the surface of 

“markedly mixed,”  there are deeper lessons to be learned from trends in these studies.  However, as we just pointed 

out, existing reviews of AV technology have neglected to systematically analyze this body of AV empirical studies 

for the purpose of gaining further insight into AV effectiveness.   

In this article, we aim to fill this gap in the research by presenting a meta-study of past experimental studies of 

AV effectiveness. Specific research questions to be explored by our meta-study include 

• What factors have the studies posited to influence educational effectiveness? Have certain factors had more 

impact than others? Are there any notable trends?  

• How have studies defined and measured “educational effectiveness?”  Have those definitions and measure-

ment techniques influenced the results? 
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In light of our answers to those questions, we are ultimately interested in addressing two broader questions: 

• Is AV technology educationally effective? 

• What are fruitful directions for future AV technology and effectiveness research? 

We begin, in section 2, by defining the boundaries of the meta-study—that is, by specifying what research falls 

within and outside of its scope. Section 3 briefly overviews the 24 experimental studies that form the central data of 

our meta-study. In section 4, we outline the methods we employ to analyze our corpus of studies. Section 5 presents 

the main findings of our analysis. Finally, in section 6, we synthesize those findings into a set of conclusions and an 

agenda for future research. 

2. Scope 

The focus of this meta-study is on algorithm visualization effectiveness. We adopt a standard definition of algo-

rithm visualization: a subclass of software visualization [18] concerned with illustrating computer algorithms in 

terms of their high-level operations, usually for the purpose of enhancing computer science students’  understanding 

of the algorithms’  procedural behavior. The notion of effectiveness, as it will be used here, concerns the union of 

humans and technology within the context of a scenario of use.   Associated with such a scenario of use is  

(a) a particular objective to be fulfilled (e.g., “ learn how the target algorithm works” );  

(b) a particular individual or group having that objective;  

(c) a particular algorithm visualization artifact that will be enlisted; and  

(d) a particular target algorithm to be visualized.   

Within this context, effectiveness thus responds to the question: To what extent does the algorithm visualization arti-

fact assist the individual or group in fulfilling the objective? 

2.1 AV scenar ios of use 

Given that the notion of effectiveness derives its meaning from the peculiarities of a scenario of use, as just de-

scribed, what scenarios of use might be the focus of studies of AV effectiveness? One of the original scenarios of AV 

use envisioned by its pioneers was algorithms research. For example, Brown [2] reports that his BALSA system was 

used to analyze a novel, stable version of Mergesort. However, since such scenarios have not been widely reported, 

and since we are unaware of effectiveness studies of such scenarios, we will not focus on them in this meta-study. 

Rather, our focus will be on scenarios of AV use within computer science education.  Indeed, AV technology has 
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seen by far its most use within computer science education, and educational scenarios of use have been by far the 

most widely studied. 

Figure 1 presents a taxonomy of scenarios of use within computer science education.   Each of these well-

established scenarios distinguishes an educational use of AV technology:  

• Lectures.  In high school classrooms and college lectures, computer science instructors use graphic repre-

sentations to help them explain aspects of the algorithms under study (see, e.g. [2], Appendix A; [19]).  As 

Gurka and Citrin [20] put it, SV in lectures is essentially “an extension of the blackboard, but with more ca-

pabilities available”  (p. 183).  

• Assignments. Students work on course assignments on their own time, and hand them in before established 

deadlines.  Several computer science educators have described their use of assigments in which students 

construct their own visualizations of the algorithms under study [2], App. A; [4, 5]. Goldenson and Wang 

[21] describe course assignments for which students use the Pascal Genie programming environment, which 

has built-in design- and run-time SV tools. 

• Class Discussion. After completing assignments in which they construct their own visualizations, students 

might use AV technology to present their visualizations to their classmates and instructor for feedback and 

discussion [5]. In such scenarios, AV technology serves both to enable greater student participation in the 

class, and to mediate student-instructor interaction. 

• Laboratories.  In AV laboratories, students interactively explore algorithms and data structures through 

structured laboratory exercises [8]. Like assignments, laboratory sessions have a concrete goal, embodied in 

a deliverable assignment.  However, unlike assignments, labs are constrained by both a location (a labora-

tory containing graphic workstations) and a contiguous block of time (a session or sitting).  

• Study.  Students enrolled in computer science courses have the opportunity to study for tests at any time. 

Depending on their individual preferences, students may elect to enlist AV in their study by drawing their 

own visualizations, by examining hard copies of visualizations constructed by others (professors or book 

authors), or by using interactive SV software to which they have access.   

• Office Hours. In college courses, professors and teaching assistants schedule weekly office hours, during 

which students in need of assistance may visit them. In this setting, instructors may use AV to help them di-
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agnose bugs in students’  programs [20], or to help them answer student questions. In the latter case, AV 

plays an explanatory role, akin to its role in lectures. 

• Tests. In closed test-taking conditions, AV can be used to help pose questions.  For example, Brown ([2], 

Appendix A) reports that exams in the algorithms courses at Brown often included stills of algorithm anima-

tions discussed in class; students would be asked to “name-that-algorithm,”  just as students in an art history 

class might be asked to identify paintings.  Alternatively, one can imagine a test question that has students 

indicate the behavior of an algorithm by drawing a series of data structure snapshots.  

2.2 AV research techniques 

The above scenarios of use provide a focal point for a body of research with a common interest in studying, 

evaluating, and ultimately improving the effectiveness of AV technology. Figure 2 presents a taxonomy of the gen-

eral research techniques that this body of research has employed:   

• Anecdotal techniques aim to appeal to reader intuition by presenting instances and examples of AV system 

use, as recounted by the system’s authors of research methods. Nearly every paper and article reporting on a 

novel AV system includes such an analysis.  

• Programmatic techniques use the actual programs required to produce visualizations within a given AV 

system as a basis for assessment.  For example, Cox and Roman [22] evaluate their Pavane system by sum-

ming the number of lines of code that are sufficient to specify a visualization within the system—the lower 

that number, the better.   

• Analytic evaluation techniques (e.g., [23, 24]) aim to provide a principled assessment of an interactive sys-

tem’s effectiveness, while avoiding the overhead of extensive empirical data collection.  Effectiveness, in 

the case of analytic evaluation, boils down to usability—the fewer usability problems identified, the more 

effective the system.   

• Empirical evaluation, in contrast to the other techniques, involves the collection of actual data on humans 

involved in tasks with AV systems. An analysis process attempts to transform the data into a set of state-

ments that respond to the research questions posed by the evaluation.   

In this meta-study, we focus on effectiveness evaluations that employ empirical techniques. Our position is that 

empirical techniques are ultimately the most informative of the techniques, because they are rooted in observable, 



www.manaraa.com

8  C.D. HUNDHAUSEN, S.A. DOUGLAS , & J.T. STASKO  

 

and often measurable, phenomena. Although we believe that studies that employ any of the numerous empirical 

techniques (see [25] for a review) have something potentially important to say about AV effectiveness, we restrict 

the analysis in this meta-study to those studies that use controlled experimentation. Controlled experiments aim to 

assert a causal relationship between factors (i.e., independent variables) and measures (i.e. dependent variables).  

While there are many variants on controlled experiments, all of the published AV experiments have been between-

subjects experimental comparisons, in which two or more groups of participants use alternative means to learn about 

an algorithm. If statistically significant differences can be detected between the groups’  performances, then experi-

menters may conclude that the factors significantly affect the measures. 

We limit our scope to experimental evaluations for two reasons: first, because they constitute the largest, most 

mature subset of the empirical studies; and second, because the evolution of their design reveals an evolution in 

thinking about why and how AV technology is effective, implying that we can gain considerable insight from consid-

ering the legacy of these experiments as a whole. 

3. Data 

Our meta-study’s data consist of 24 experimental studies that have considered AV effectiveness. To the best of 

our knowledge, this corpus comprises close to the entire population, if not the entire population, of published AV 

effectiveness experiments.  Table 2 provides a synopsis of these studies.  For each experiment, the factors (inde-

pendent variables) appear in column 2; the measures (dependent variables) appear in column 3; and a summary of 

the experiment’s key results appears in column 4.  

Twenty-two of the 24 of the experiments attempt to determine whether various factors affect learning within the 

“study”  scenario of use described in Section 2.  In these experiments, learning is operationalized in terms of some 

sort of post-test, which participants take upon completing their study session. The two other experiments [26, 27] 

consider “assignment”  scenarios in which participants use AV to solve problems. In these experiments, problem-

solving efficacy is operationalized in terms of whether the problems were solved, and how much time was needed. 

Figure 3 summarizes the results of the 24 experiments. As the figure illustrates, the results have been widely 

mixed. Eleven of the 24 studies yielded a “significant”  result—that is, a statistically-significant difference between 

the performance of (a) a group of students using some configuration of AV technology, and (b) another group of 

students using either an alternative configuration of AV technology, or no AV technology at all. For example, Law-
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rence ([16], Ch. 6 and 9) found, in two separate experiments, that students who explored algorithm animations driven 

by self-constructed input data sets scored significantly higher than students who either watched the same animations 

driven by data supplied by the experimenter, or who had no access to such animations. Likewise, Crosby and Ste-

lovsky [28] found that students who interacted with an algorithm animation performed significantly better than stu-

dents who listened to a lecture, and that “concrete”  learners (as measured by the Myers-Briggs Type Indicator) bene-

fited significantly more from the algorithm animation than did “abstract”  learners. Finally, Hansen, Schrimpsher, and 

Narayanan [14] found that students who learned an algorithm using their HalVis hypermedia environment, which 

provides its viewers with multiple views and engages them in input data set design, interactive prediction, and 

queston-answering, significantly outperformed students who learned the same algorithm using (a) textual materials 

(Study I), (b) a lecture (Study II), or (c) a conventional, one-view algorithm animation environment with no facilities 

for interactive prediction or question-answering (Study V). In follow-up studies, Hansen, Schrimpsher, and Naraya-

nan [14] additionally found that students who interacted with the HalVis conceptual and detailed views performed 

significantly better than students who did not have access to these views (Studies VII and VIII). 

In contrast, a roughly equal number of studies (10) did not have a significant result. In other words, in these 

studies, no statistically significant differences could be found between the performance of (a) groups of students us-

ing some configuration of AV technology, and (b) groups of students using either an alternative configuration of AV 

technology, or no AV technology at all. For instance, Price [26] had two groups of students debug a 7,500 program 

using a debugger with and without an animated view. He found no significant differences in debugging efficacy be-

tween the two groups. Similarly, Stasko, Badre, and Lewis [15] had two groups of students learn the pairing heap 

data structure (a) by interacting with an algorithm animation, and (b) by studying textual materials. methods. Al-

though the animation group performed better on a post-test, the difference was not statistically significant. Finally, 

Lawrence ([16], ch. 4 & 5) compared the post-test performance of students who learned algorithms using animations 

with alternative representational characteristics:  sticks versus dots; 9 vs. 24 vs. 41 data elements; and labels vs. no 

labels. She found no significant differences among the groups.    

Two studies found a significant result in which the positive impact of visualization could not be disentangled 

from another factor. In these studies, Byrne, Catrambone, and Stasko [17] found that students who made predictions 

regarding future animation frames while viewing algorithm animations performed significantly better than students 
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who did not view animations or make predictions; however, the individual effects of prediction and animation could 

not be disentangled statistically. 

Finally, one study yielded a “negative”  result in which students who used AV technology actually performed 

significantly worse than students who used text-based tools. In particular, Mulholland [27] found that, in Prolog trac-

ing tasks, participants who used any of three textual tracers solved significantly more problems than participants who 

used TPM, a graphical tracer. 

4. Method 

In the field of psychology, meta-analytical techniques (see, e.g., [29]) have been developed for statistically ana-

lyzing a body of related experimental studies with similar independent and dependent variables. The goal of these 

meta-analytical techniques is to infer invariant cause-effect relationships based on the findings of a corpus of related 

studies. To do so, a statistical meta-analysis systematically combines and compares the studies in order to determine 

the effect size and significance level of their independent variables.  

For example, in order to build a “ task-feature taxonomy”  that can guide the effective use of information visuali-

zation technology, Chen and Yu [30] perform a statistical meta-analysis of a sample of 35 experimental studies of 

information visualization. However, the diversity of the studies in their sample makes it difficult to apply meta-

analytic techniques; they are ultimately forced to reduce their sample to six sufficiently homogeneous studies focus-

ing on information retrieval tasks. Interestingly, their analysis determines that individual differences have a larger 

and more consistent effect on human performance than does information visualization technology itself. 

We considered using statistical meta-analytic techniques in this meta-study, but ultimately decided against them 

for two reasons. First, like the sample of Chen and Yu, the corpus of experimental studies on which we are focusing 

is quite diverse. Indeed, while their independent and dependent variables may appear similar on the surface, the ways 

in which those variables are manipulated and operationalized vary considerably. For example, while some studies 

compare the use of AV technology against the use of conventional learning materials (e.g., [15, 17, 28]), others 

compare competing versions of AV technology (e.g., [16, 31, 32]).  Likewise, while some studies operationalize 

learning in terms of a post-test consisting of exam-style questions (e.g., [15-17]), others opt to measure performance 

in terms of accuracy on programming [31, 33], tracing [31], and prediction [14, 17] tasks. Second, even if, like Chen 

and Yu, we were able to find a small number of sufficiently homogenous studies on which to perform a statistical 
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meta-analysis, we do not believe that such a meta-analysis would be informative. This is not only because the sample 

that we would ultimately consider would be small, but also because large discrepancies in the results of the studies in 

our sample would give rise to statistically uninformative conclusions.  

For these reasons, we believe that any meta-analysis of this corpus of studies must find a principled way to 

classify the studies into smaller groups, such that each group’s results, when taken as a whole, is more uniform. What 

might be the basis of such a principled classification? In scrutinizing the studies in our corpus, we have observed (see 

also [5]) notable differences in their choices of both independent variables (i.e., the factors they posit to cause effec-

tiveness) and their choices of dependent variables (i.e., the ways in which they measure effectiveness).  For example, 

some studies manipulate representational features of visualizations (e.g., color, shading, geometry), while others ma-

nipulate the learner’s level of activity (e.g., learner views visualization; learner designs input data; learner makes 

predictions regarding future visualization states). Likewise, the studies measure effectiveness in terms of differing 

kinds of knowledge acquisition—both conceptual and procedural.  

The analysis method we employ in this meta-study, then, involves first classifying the studies in various princi-

pled ways based on their independent and dependent variables, and then scrutinizing the results of the studies vis-à-

vis these classifications. Our analysis of study results includes both quantitative comparisons of the numbers of 

statistically significant and non-significant results in opposing classes of studies, and qualitative assessments of 

trends.  It is important to note that our analysis will not make judgments about the validity of each experiment—that is, 

the extent to which each experiment’s results can be trusted. Rather, we will make the simplifying assumption that 

the results of each experiment in our corpus can be trusted roughly equally. While the experimental results on which 

we base our analyses are clearly tempered by the soundness of their experimental designs, and while there clearly are 

differences in the soundness of the experiment designs in our corpus, we believe that the differences are minor. 

Hence, critiquing experimental design would, we believe, constitute an unnecessary distraction from our focus on 

results.   

5. Analysis 

5.1 Independent var iables 

We begin our analysis by scrutinizing the studies’  independent variables—that is, the factors they have posited 

to cause effectiveness. We argue that the studies’  differences in independent variables actually reflect deeper differ-
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ences in underlying theories of effectiveness:  the studies’  assumptions about how and why AV might be effective. In 

the studies in our corpus, AV technology is enlisted as a pedagogical tool; its goal is to enhance learning. It follows 

that the theories of effectiveness underlying the studies in our corpus correspond with alternative theories of learning.  

This section begins by presenting the four alternative learning theories adopted by the studies in our corpus. 

Next, we link each study to a particular theory based on its choice of independent variables. Following that, we quan-

titatively assess the robustness of each theory by considering the number of significant versus non-significant results 

of the studies associated with it. Finally, we perform a reality check on our findings by assessing the extent to which 

the empirical results of competing theories actually lend support to the theory that our analysis found to have the 

greatest support.  This finer-grained analysis enables us to draw more definitive conclusions about the robustness of 

that theory.  

5.1.1 Four  theor ies of effectiveness 

The varied designs of the AV experimental studies reflect a variety of underlying theories of effectiveness. 

While finer distinctions may certainly be made among these studies’  theoretical underpinnings, the broad-brush 

analysis presented here places them into four broad theoretical camps, which we label Epistemic Fidelity, Dual-

Coding, Individual Differences, and Constructivism. Below, we briefly describe these theories; for a fuller treatment, 

see [5].  

Epistemic Fidelity. Epistemic Fidelity theory [5, 34, 35] has its roots in a representationalist epistemological 

framework (see, e.g., [36]), which  assumes that humans carry around in their heads symbolic models of the physical 

world, and that such symbolic models are the basis for all of their reasoning and action. The key assumption of Epis-

temic Fidelity theory, then, is that graphics have an excellent ability to encode an expert’s mental model of an algo-

rithm, leading to the robust, efficient transfer of that mental model to the viewer (see Figure 4).  Thus, Epistemic 

Fidelity theory emphasizes the value of a good denotational match between the graphical representation and the ex-

pert’s mental model.  The higher the “ fidelity”  of the match, the more robust and efficient is the transfer of that men-

tal model to the viewer of the visualization, who non-problematically decodes and internalizes the target knowledge.   

Dual-coding. Based on Mayer and Anderson’s [37] integrated dual-code hypothesis, Dual-Coding theory pro-

ceeds from Paivio’s [38] assumption that “cognition consists largely of the activity of two partly interconnected but 

functionally independent and distinct symbolic systems”  (p. 308).  One encodes verbal events (words); the other en-
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codes nonverbal events (pictures).  According to Mayer and Anderson’s hypothesis, visualizations that encode 

knowledge in both verbal and non-verbal modes allow viewers to build dual representations in the brain, and refer-

ential connections between those representations.  As a consequence, such visualizations facilitate the transfer of 

target knowledge more efficiently and robustly than do visualizations that do not employ dual-encoding. 

Individual differences. A legacy of psychological experiments have attempted to operationalize, and to better 

understand, individual differences in human cognitive abilities and learning styles (see, e.g., [39]). The key contribu-

tion of this research has been not only a battery of instruments for rating and classifying individuals along several 

dimensions, but also empirical results that make important statements about human performance relative to individ-

ual differences so measured.  Thus, in the context of this analysis, Individual Differences theory asserts that measur-

able differences in human abilities and styles will lead to measurable performance differences in scenarios of AV 

use. For example, within the scope of Epistemic Fidelity theory’s knowledge transfer model (see Figure 5), Individ-

ual Differences with respect to learning style (see, e.g., [40]) might enable some individuals to decode visualizations 

more efficiently and robustly than other individuals. 

Cognitive Constructivism. Rather than regarding knowledge as representations of an objective reality that peo-

ple carry around in their heads, Cognitive Constructivism (see, e.g., [41]) asserts that there is no absolute knowledge.  

Instead, it holds that individuals construct their own individual knowledge out of their subjective experiences in the 

world. By becoming actively engaged with their environment, individuals actively construct new understandings by 

interpreting new experiences within the context of what they already know.  

Note that Cognitive Constructivism’s emphasis on active learning has important implications for the effective 

use of AV technology. In particular, it suggests that individuals do not stand to benefit from the technology by 

merely passively viewing visualizations, no matter how high the level of their epistemic fidelity.  Instead, AV tech-

nology users must become more actively engaged with the technology in order to benefit most from it. The technol-

ogy, on this view, is seen not as a conveyer of knowledge, but as a tool for knowledge construction. 

In order to highlight the key distinctions among the four theories just discussed, Table 3 synopsizes the theories 

and the role they ascribe to an AV.   
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5.1.2 L inking studies to theor ies 

The independent variables chosen by each of the 24 experimental studies summarized earlier, as well as the 

ways in which those independent variables are manipulated, provide insight into each study’s theoretical underpin-

nings. By examining each study’s experimental manipulation, we can link it to one of the theories of effectiveness 

just discussed. 

Table 4 links each of the 24 experimental studies to an underlying theory of effectiveness. In four cases ([16], 

Ch. 5 & 7; [28]; [14], Study VI), a study is linked to two underlying theories, because the study defined independent 

variables, or performed experimental manipulations, that were judged to support multiple underlying theories. 

As this table indicates, we judged ten studies to be aligned with Epistemic Fidelity theory. These studies ma-

nipulated either (a) representational features of visualizations, or (b) the order in which visualizations are presented. 

The hypothesis that these studies are positing is that certain representational features, or certain orderings of features, 

will promote the knowledge decoding process more robustly and efficiently than others.  

In two separate studies, Lawrence ([16], Ch. 5 & 7) compared the efficacy of representations in which informa-

tion is singly-encoded (graphics only) and doubly-encoded (graphics and textual labels). These studies are clearly 

inspired by Dual-Coding theory, which holds that the dually-coded representations will promote more robust and 

efficient knowledge transfer.  

 Lawrence [16] and Crosby & Stelovsky [28] considered the impact of spatial abilities, cognitive abilities, and 

learning styles on one’s ability to learn from a visualization. These studies were clearly influenced by Individual Dif-

ferences theory.   

Finally, fourteen studies manipulated the way in which humans are engaged with their environment to accom-

plish some task for which AV is assumed to be beneficial.  By varying primarily the kinds of activities and forms of 

engagement, and not the representation, these studies demonstrate a loyalty to Cognitive Constructivism, which 

views the benefits of AV technology not in its ability to transfer knowledge, but in its ability to promote the construc-

tion of knowledge through active engagement.  

5.1.3 Coarse-grained analysis of theory robustness 

Given that each study shows a loyalty to one of the theories of effectiveness, an important question arises: What 

level of experimental support has been demonstrated for each of the four theories? To start to answer that question, 
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Figure 5 presents a bar graph of the experimental results vis-à-vis each of the four theories. In this bar graph, each 

experimental study is assumed to have equal weight. The length of each bar corresponds to the number of studies 

that have been guided by the corresponding theory. The filled-in portion of each bar indicates the number of statisti-

cally significant results that were obtained in support of the theory.1  The amount each bar is filled in thus graphically 

indicates the proportion of the results that were statistically-significant.  

As Figure 5 illustrates, Cognitive Constructivism has been the most tested of the four theories (14 studies), with 

Epistemic Fidelity theory trailing close behind (10 studies), and Dual-Coding theory and Individual Differences the-

ory lagging far behind. Moreover, notice that studies in support of Cognitive Constructivism have obtained the great-

est number (10), and highest percentage (71%), of statistically significant differences. Based on this broad-brush 

analysis, one can conclude that Cognitive Constructivism has garnered the most consistent empirical support. 

5.1.4 Finer-grained analysis of Cognitive Constructivism 

Clearly, the conclusion reached by the above analysis must be considered tentative, because the analysis fails to 

consider the global case for a given theory—that is, whether study results outside of a given theoretical camp lend 

support to, or weaken, a given theory. Focusing on the case for Cognitive Constructivism, the analysis that follows 

scrutinizes its support across the entire corpus of studies. As we shall see, this analysis lends further credence to the 

theory by illustrating its broader predictive success. 

An important assumption of Cognitive Constructivist theory is that learner activity matters; active learning is 

assumed to be superior to passive learning. Rather than passively viewing algorithm visualizations, active learners 

augment their viewing with such activities as 

• constructing their own input data sets (e.g., [16], ch. 9); 

• making predictions regarding future visualization states (e.g., [17]); 

• programming the target algorithm (e.g., [33]);  

• answering strategic questions about the visualization (e.g., [14]); and 

• constructing their own visualizations (e.g., [31]). 

On the Cognitive Constructivist view, then, AV technology is seen as educationally effective to the extent that it ac-

tively engages learners in such activities.  

                                                      
1Note that the one study that obtained negative significant result [27] is counted as a non-significant result in the Epistemic 
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Given this, an obvious question arises: Does the precise form of the activity matter? In other words, are some 

activities better at promoting “active learning”  than others?  The Cognitive Constructivist position is that, as long as 

the learner’s activity is salient to the target knowledge or skill, the effort required to engage in the activity is more 

important than its actual form.  Thus, assuming equal salience, Cognitive Constructivist theory would predict that the 

more effort required to engage in the activity, the more robust the learning.  

Applying this reasoning to controlled experimental comparisons, we find that Cognitive Constructivism pre-

dicts an educational advantage only in cases in which the activity of one treatment group is more effortful than that 

of the other treatment group(s). Conversely, if all treatment groups’  activity is roughly equivalent in terms of neces-

sary effort, then the theory does not predict any learning differences.  

To further scrutinize the robustness of Cognitive Constructivism, we can examine the results of the 24 experi-

ments in our corpus vis-à-vis the equivalence of the effort required to perform the activities in their competing treat-

ment groups.  As a first step, we must judge the equivalence of the effort required to perform the activities in 

competing treatment groups (see Table 5). If, in a given experiment, the competing learning activities require 

roughly equivalent cognitive effort, we classify them as “Effort equivalent.”  For example, we judge that viewing two 

alternative visualizations ([16], Ch. 4.4) requires roughly equivalent effort. Likewise, we estimate that paper-and-

pencil problem-solving exercises require effort roughly equivalent to that of interacting with the HalVis hypermedia 

system ([14], Study III), which engages users in equivalent problem-solving activities. If, on the other hand, a 

notable difference exists in the effort levels required to engage in the competing treatment groups of a given 

experiment, we classify the experiment as “Effort not equivalent.”  For example, in our judgment, reading textual 

materials, listening to a lecture, and passively viewing a visualization all require markedly less effort than actively 

using a visualization in conjunction with some sort of learning exercise—for example, prediction [17, 32], input data 

selection ([16], ch. 9], or programming [33]. 

An important implication of Cognitive Constructivism is that experiments rated as “Effort not equivalent”  will 

show a significant learning advantage for the more effortful group . Conversely, the theory suggests that experiments 

rated as “Effort equivalent”  will show no significant differences between the treatment groups.2 The next step in the 

                                                                                                                                                                           
Fidelity bar. 
2Of course, these predictions assume that an experiment’s learning materials are well designed and contain enough 
information to enable participants to perform well on the post-test. Indeed, if the experimental materials are deficient—for 
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analysis is to see whether these predictions are actually borne out. Under the assumption that each experimental 

study has equal weight, Figure 6 carries out this step by plotting the number of results and significant results vis-à-vis 

the “Effort not equivalent/Effort equivalent”  classification presented in Table 5.  In six of nine studies in which com-

peting treatment group activities required roughly equivalent effort, no significant results were found. In contrast, in 

10 of 14 studies in which one of the treatment groups required more effort, the group expending the higher level of 

effort significantly outperformed the other group. These results accord reasonably well with the theory’s predictions. 

In the case of “Effort equivalent”  studies, Cognitive Constructivism predicts 67% of the results. In the case of “Effort 

not equivalent”  studies, Cognitive Constructivism predicts 71% of the results. 

This quantitative finding is further reinforced by contrasting two studies classified as “Effort equivalent”  with 

similarly-designed studies classified as “Effort not equivalent.”  Gurka [20] attempted to replicate one of the experi-

ments of Byrne, Catrambone, and Stasko [17], which obtained a significant result in favor of participants who made 

predictions and viewed an animation. However, Gurka eliminated the prediction conditions from her experiment, 

opting instead to compare a group of participants who used an animation against a group of participants who did not, 

with no substantial differences in the groups’  levels of engagement. Both groups of participants, for example, en-

gaged in group study as part of their learning session.  As would be predicted by Cognitive Constructivist theory, 

Gurka’s de facto equalization of participants’  activities led to a non-significant result.  

Likewise, in a series of studies, Hansen, Schrimpsher, and Narayanan [14] found that participants who used 

their HalVis multimedia environment, which actively engages its users by having them construct their own input data 

sets, answer questions, and make predictions, significantly outperformed participants who learned from textual mate-

rials (Studies I and II), and viewed a lecture (Study IV). In one of their studies (Study III), however, the researchers 

attempted to equalize the activities of the HalVis and text-only groups by having students in the text-only group not 

only read articles on an algorithm, but also complete a series of paper-and-pencil exercises. As would be predicted 

by Cognitive Constructivist theory, the researchers’  decision to engage the text-only participants as actively as par-

ticipants in the HalVis group led to their failure to find a significant difference between the two groups’  learning 

outcomes.  

                                                                                                                                                                           
example, if the algorithm animation is poorly designed or lacks necessary information—then no amount of effort is likely to 
lead to a measurable learning difference.  
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In sum, our finer-grained analysis shows that Cognitive Constructivism predicts not only the greatest percent-

age of significant results (77%), but also a majority (60%) of the non-significant results. This analysis lends further 

credence to our coarse-grained analysis’  conclusion that Cognitive Constructivist theory is the most robust. In con-

trast, Epistemic Fidelity theory has had the least predictive success, having predicted just 30% of the significant re-

sults, with another significant result running completely counter to the theory’s predictions.  Finally, due to low 

numbers of supporting studies, it is fair to say that the jury is still out on Dual-Coding and Individual Differences 

theories. 

5.2 Dependent var iables 

We now move to an analysis of the studies’  dependent variables—that is, the ways in which they have meas-

ured effectiveness. The two studies in our corpus that examined “assignment”  scenarios measured effectiveness in 

terms of participants’  success at solving debugging and tracing problems with the help of AV technology [26, 27]. 

Neither of these experiments yielded a significant result. A survey of the remaining 22 studies’  dependent variables 

suggests that they measured effectiveness in remarkably similar ways. Indeed, all of these experiments elected to 

measure effectiveness in terms of knowledge acquisition. The underlying hypothesis was that the experimental ma-

nipulation will lead some experimental treatments to acquire target knowledge more robustly than others.   

On closer inspection of the 22 studies that measure effectiveness in terms of knowledge acquisition, we find no-

table differences both in terms of what they measure, and how they measure it. Below, we further investigate these 

two key differences, in an attempt to determine whether certain choices of dependent variables have led to greater 

success in detecting learning differences. 

5.2.1 Differences in what knowledge is measured 

The first notable difference among the studies’  dependent variables lies in the precise types of knowledge they 

attempt to measure.  Consistent with typical college exams in computer science, the studies have aimed to measure 

two distinct types of knowlege: 

• conceptual or declarative—an understanding of the abstract properties of an algorithm, e.g., its Big-O effi-

ciency, its range of output, or limits on the input data that it can process. A sample test question might be 

“What is the worst-case efficiency of the algorithm?”  



www.manaraa.com

A META-STUDY OF ALGORITHM VISUALIZATION EFFECTIVENESS 19 

• procedural—an understanding of the procedural, step-by-step behavior of an algorithm, that is, how it oper-

ates on a set of input data. A sample test question might involve tracing an algorithm’s key variables and 

data structures for a given set of input data.  

It is important to note that these two forms of knowledge are not necessarily distinct. Frequently, a high level of 

conceptual knowledge is needed to be able to understand an algorithm’s procedural behavior. For example, in order 

to understand how the Quicksort algorithm works, one needs a conceptual understanding of recursion. Conversely, 

understanding procedural operations can help with conceptual questions. For example, grasping the pattern of Quick-

sort’s divide-and-conquer strategy can give one insight into the algorithm’s efficiency. 

Table 6 classifies the 22 knowledge-measuring studies according to whether their evaluation instruments test 

(a) conceptual and procedural knowledge, (b) conceptual knowledge only, or (c) procedural knowledge only. (Note 

that some studies include multiple dependent measures that test more than one of these combinations. These studies 

are listed multiple times—once for each respective combination.) Since most visualizations focus on the procedural 

behavior of an algorithm, it is no surprise that a majority of the studies have attempted to measure procedural knowl-

edge alone. For the same reason, only a small number (3) of the studies have measured conceptual knowledge alone. 

Nine studies have forged a middle ground by measuring both forms of knowledge.  

Under the assumption that each experimental study has equal weight, Figure 7 carries the analysis further by 

graphically presenting the number of significant and non-significant results vis-à-vis the three classes of experiments 

categorized in Table 6. As the figure illustrates, all three knowledge measures garnered comparable levels of experi-

mental support; no one measure appears to be more sensitive to learning effects than any other. Given that algorithm 

visualizations illustrate the procedural behavior of algorithms, it is perhaps somewhat surprising that two out of the 

three studies that measured conceptual knowledge exclusively obtained significant results. However, the sample size 

(3) is clearly too small for general conclusions to be drawn.  

Of the other two knowledge measurements, procedural knowledge only appears to have been more sensitive to 

learning differences than conceptual and procedural knowledge, although this result is difficult to interpret. One 

might speculate that the conceptual portion of the conceptual-and-procedural tests is what diminished their sensitiv-

ity. If that were the case, we would expect the conceptual-only tests to be even less sensitive than procedural-and-

conceptual tests. That is not the case, however. Indeed, we find that combining the conceptual-only results with the 

conceptual-and-procedural results actually raises the overall sensitivity of conceptual-and-procedural tests to 45% (5 
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of 11 significant results). In spite of these inconsistent results, procedural test questions still appear to be somewhat 

more sensitive to AV technology’s educational benefits than conceptual questions. 

5.2.2 Differences in how knowledge acquisition is measured 

The methodology employed to measure knowledge acquisition constitutes the second notable difference in the 

studies’  dependent variables. In thirteen of the 22 studies (see Table 7), a post-test designed to measure knowledge 

acquisition formed the sole basis of measurement. Post-test scores constituted the data that are statistically analyzed. 

In contrast, the other nine studies (see Table 7) gave participants both a pre-test and a post-test. In these studies, pre-

test to post-test improvement formed the basis of the statistical analyses.  

As Figure 8 illustrates, the results of experiments employing these two alternative measurement techniques dif-

fer noticeably. Seven of 13 (54%) of the studies that measured learning using a single post-test found a statistically 

significant difference between treatment groups. In contrast, seven of nine (78%) studies that measured learning 

based on pre-test to post-test improvement found statistically significant differences. In interpreting the 78% success 

rate of pre- to post-test improvement, one should keep in mind that it is biased in the sense that it is based almost 

entirely on the work of a single line of studies. Nonetheless, given the difference in success rates, one can cautiously 

conclude pre-test to post-test improvement may be more sensitive to learning differences than simple post-test per-

formance.  

Viewing these results in light of Cognitive Constructivism’s predictions lends further credence to this finding.  

Just two experimental studies ([14], Study III and VI) that measured pre-test to post-test improvement actually failed 

to obtain a significant difference. Of those two studies, Cognitive Constructivism would have predicted only one of 

the studies to find a significant difference between treatment groups. Thus, according to Cognitive Constructivism, 

the pre-test to post-test improvement measure failed just once. In contrast, the post-test only measure failed three 

times. Indeed, of the six “post-test only”  studies that failed to find a significant difference, Cognitive Constructivism 

would have predicted three [15, 31, 32] to have found a significant difference. 

6. Conclusions 

In this article, we have presented an integrative review of empirical studies of algorithm visualization effective-

ness, in order to uncover trends in the research that might help us better understand how and why AV technology is 

effective. The focus of our review has been on one particular class of empirical studies: controlled experiments of 
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AV technology in educational scenarios of use. We have pursued two separate analyses of 24 such experimental 

studies. Our first analysis examined their results vis-à-vis their independent variables in an attempt to better under-

stand what factors have most consistently caused effectiveness. Conversely, our second analysis looked at the stud-

ies’  results vis-à-vis their dependent variables, in order to understand both how effectiveness has been defined, and 

what measures are best able to detect it. What exactly have we learned from our meta-study’s review and analysis?  

We conclude by revisiting our four original research questions in light of our results. 

6.1 What factors have had the most impact on effectiveness? 

Four general theories of effectiveness, encompassing differing epistemological assumptions about knowledge 

and its relationship to an AV, have been embraced by our sample of experimental studies:  Epistemic Fidelity, Dual-

Coding, Individual Differences, and Cognitive Constructivism. By far the greatest number of studies have been 

guided by either Epistemic Fidelity or Cognitive Constructivism.  The other two theories, Dual-Coding and Individ-

ual Differences, have not been explored thoroughly enough for definitive conclusions to be drawn. As our course-

grained analysis indicates, experimental manipulations of AV learner activities, indicative of adherence to Cognitive 

Constructivist theory, have had more significant and consistent impact on experiments’  dependent variables than 

have experimental manipulations of AV representation, indicative of adherence to Epistemic Fidelity theory. More-

over, an analysis of participant groups’  engagement effort equivalence with respect to experimental results across all 

experiments further substantiates the pedagogical impact of using AV technology to engage students actively in their 

own learning. Thus, according to our analysis, how students use AV technology, rather than what students see, ap-

pears to have the greatest impact on educational effectiveness. 

6.2 What measures have been most sensitive to effectiveness? 

Twenty-two of the 24 studies in our corpus operationalize effectiveness in terms of conceptual knowledge, pro-

cedural knowledge, or both. An analysis of experimental results based on type of knowledge measured suggests that 

procedural knowledge may serve as a more sensitive measure of AV technology’s benefits than conceptual knowl-

edge. We take comfort in the fact that this finding is borne out in other non-experimental studies of AV technology 

not included in our corpus (e.g., [42]). 

Closer inspection of the studies’  dependent variables suggests that they have measured knowledge using two 

different techniques:  post-test performance only, and pre- to post-test improvement Assuming that a learning differ-
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ence truly exists between treatment groups, our analysis suggests that pre-test to post-test improvement will be more 

likely to find such a difference than post-test performance alone. It is important to qualify this finding in two ways. 

First, it is biased in the sense that it is based largely on the results of one particular line of studies [14]. Second, we 

believe that measuring pre-test to post-test improvement introduces a methodological problem that has not been ad-

dressed by the studies that employed it: The pre-test may give participants knowledge of the target algorithm outside 

of the treatment condition.  Thus, we believe that studies that use this method to measure effectiveness need to ad-

dress this methodological issue. 

Finally, we would be remiss not to point out that our conclusions are limited in that they are based on a corpus 

of studies that considered an extremely limited range of dependent variables. A few studies employed alternative 

measures—for example, time spent learning [32], the time spent taking the post-test [31], and success on graphical 

versus textual questions [28]. By and large, however, the studies in our corpus operationalized learning in terms of 

conceptual and procedural knowledge acquisition. 

6.3 Is AV technology effective? 

Clearly, answers to the previous two questions provide a backdrop for addressing the all-important question of 

whether AV technology is educationally effective.  In light of our meta-study findings, our answer to this question 

would have to be a qualified “yes.”  In what ways is AV technology educationally effective, and in what ways is it not 

educationally effective?   

Let us begin with the ways in which it is not effective. With few exceptions, we found that studies in which stu-

dents merely viewed visualizations did not demonstrate significant learning advantages over students who used con-

ventional learning materials. Perhaps contrary to conventional wisdom, this observation suggests that the mere pres-

ence of AV technology—however well-designed and informative the visual representations it presents may appear to 

be—does not guarantee that students will learn an algorithm. To state this in terms of the learning theory (Epistemic 

Fidelity) underlying this form of AV technology use, our findings suggest that algorithm visualizations do not merely 

transfer an expert mental model of an algorithm to a student’s brain. In successful applications of AV technology, 

something else appears to be going on. 
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In particular, our meta-study suggests that the most successful educational uses of AV technology are those in 

which the technology is used as a vehicle for actively engaging students in the process of learning algorithms. For 

example, as we have seen, AV technology has been successfully used to actively engage students in such activities as  

• what-if analyses of algorithmic behavior (e.g., [16], ch. 9); 

• prediction exercises (e.g., [17]); and 

• programming exercises (e.g., [33]). 

Notice that, in such cases, rather than being an instrument for the transfer of knowledge, AV technology serves 

as catalyst for learning. To state this in terms of the learning theory (Cognitive Constructivism) underlying this form 

of AV technology use, our results suggest that algorithm visualizations are educationally effective insofar as they 

enable students to construct their own understandings of algorithms through a process of active learning. 

In sum, our meta-study suggests that AV technology is educationally effective, but not in the conventional way 

suggested by the old proverb “a picture is worth 1,000 words.”   Rather, according to our findings, the form of the 

learning exercise in which AV technology is used is actually more important than the quality of the visualizations 

produced by AV technology. This is not to say that visualization quality does not matter—in a successful learning 

activity, a well-designed visualization certainly contributes—but rather to say that the form of activity is more impor-

tant than the form of the visualization. 

6.4 What directions for  future research appear  most fruitful? 

Finally, our meta-study findings suggest several directions for future research into AV effectiveness.  We con-

clude by highlighting what we see as the most important of these, organizing our discussion around the topics of in-

dependent variables, dependent variables, and scope.  

6.4.1 Independent var iables 

As we have seen, the majority of AV effectiveness research over the past decade has been guided by just two 

theories:  Epistemic Fidelity and Cognitive Constructivism. In the interest of gaining deeper insight into AV effec-

tiveness, we believe that future research would do well to explore other alternatives. One obvious place to start is 

with Dual-Coding and Individual Differences theories, both of which have already garnered support by studies in our 

corpus.  Dual-Coding theory has, in fact, had predictive success in a legacy of experimental studies investigating the 
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pedagogical benefits of instructional hypermedia (e.g., [37]); we would be interested to see it pursued further within 

the scope of pedagogical AV.  

We believe another promising source of theoretical inspiration is recent anthropological research into the social 

and situated nature of learning and communication. In the style of Table 3 (p. 33), Table 8 outlines two other general 

theories of effectiveness that come from that line of work. Building on Situated Action Theory (see, e.g., [43]), Ro-

schelle [35] argues that visualizations are one of a multitude of mediational resources that help groups of people to 

negotiate a shared understanding of the topics under study. Alternatively, Sociocultural Constructivism (e.g., [44]) 

views AV effectiveness at the level of the community of practice, rather than the individual. In particular, AV 

technology is seen as effective insofar as it provides students with access to the kinds of expert activities normally 

carried out by algorithms teachers. Hundhausen [5] uses sociocultural theory to guide his study of the use of AV 

technology in an undergraduate algorithms course.  

6.4.2 Dependent var iables 

Measuring procedural and conceptual knowledge in terms of test performance has a solid foundation in prac-

tice; indeed, it is the same measure used in traditional computer science courses to evaluate student performance. 

However, in order to obtain a deeper understanding of AV technology’s educational benefits, future empirical stud-

ies should, in our opinion, have the courage to explore alternative measures—preferably in concert with traditional 

measures so as not to disenfranchise themselves from the mainstream.  

Since a study’s dependent measures are a logical consequence of the learning theory that informs it, alternative 

measures can be explored within the context of alternative theories.  In stark contrast to the learning theories that 

influenced the studies in our corpus, the two alternative learning theories introduced above (see Table 8) situate 

knowledge not in the head, but in the broader realms of social interaction (Situated Action) and community 

reproduction (Sociocultural Constructivism). According to these theories, individual knowledge acquisition does not 

serve as an adequate measure of learning, which must be measured within the broader context of social interaction 

within communities of practice.  

For example, Situated Action theory would recommend evaluating an algorithm visualization by creating a so-

cial situation in which two learners use the visualization to establish a shared understanding of the underlying algo-

rithm. In such an interaction, conversation analysis would be used to determine the extent to which the visualization 
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serves as a mediational resource for the learners. For example, Douglas, Hundhausen, & McKeown [45] use this 

evaluation measure in their studies of the human visualization of sorting algorithms.  

Likewise, Sociocultural Constructivism would recommend evaluating an algorithm visualization within the 

scope of its use as a cultural artifact in a community of practice such as the one being reproduced in an undergradu-

ate algorithms course. In such a setting, the effectiveness of the visualization would be judged according to its ability 

to enable learners gradually to participate more fully in the community—that is, to increasingly take on the identity 

and roles of the course instructor. For example, within the scope of a junior-level algorithms course, Hundhausen [5] 

uses ethnographic field techniques to qualitatively evaluate effectiveness in this way. 

6.4.3 Scope 

We intentionally limited the scope of our meta-study to experimental studies of AV in educational scenarios of 

use. In so doing, we clearly neglected important lines of related empirical work that are grist for future analysis.  

Below, we describe three of the most important of these. 

Other research techniques. Our meta-study focuses exclusively on experimental studies of AV effectiveness. 

However, as we pointed out in section 2.2, controlled experimentation is just one of several empirical evaluation 

techniques that one might use to study AV effectiveness. Four other relevant empirical techniques that have been 

employed by past AV effectiveness research include: 

• Usability tests—these endeavor to identify, diagnose, and ultimately remedy problems with an interactive 

system’s user interface by videotaping a small number of participants are videotaped as they complete rep-

resentative tasks with the system (see, e.g., [46]).  

• Ethnographic field techniques—these include any of the qualitative techniques one might use to conduct a 

field study [47] in a naturalistic setting—e.g., participant observation, interviews, and artifact collection.   

• Questionnaires and surveys—these are often used as a complementary source of data in empirical studies. 

They elicit written responses to a set of questions in which the researcher is interested (see, e.g., [48]).  

• Observational studies—these investigate some activity of interest in an exploratory, qualitative fashion, of-

ten through analysis of videotaped footage of humans interacting with AV technology (see, e.g., [25]).  

We believe that each of these alternative empirical methods can play a valuable role in helping us to gain in-

sight into AV effectiveness. For example, usability tests can tell us whether an AV system’s user interface is prevent-
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ing its users from reaping the benefits of a visualization (see, e.g., [49]). Likewise, ethnographic field techniques and 

observational studies can help us understand how and why AV technology might be effective in a real classroom 

(e.g., [5]), or in a realistic study session (e.g., [42]). Questionnaires and surveys can help us understand AV technol-

ogy users’  preferences, opinions, and advice regarding AV technology design and use (see, e.g., [50]). Thus, an im-

portant area for future research is to perform a meta-study that includes the published empirical studies that employ 

these alternative techniques to study AV effectiveness. According to our estimates, close to 30 such studies have 

been published. .  

Other aspects of scenarios. The experimental studies in our corpus have maintained a narrow focus on specific 

parts of a given scenario of use. For example, in the “study”  scenario considered by most of the experiments, the 

focus has been on students’  use of the technology. The other tasks that must be done “behind the scenes,”  such as 

preparing the visualizations for student use and integrating the technology into a course curriculum, are left unex-

plored. 

While the actual use of AV technology for learning is plainly the crux of any scenario of AV use, the studies’  

narrow focus on that use has prevented them from obtaining a broader perspective of effectiveness.  Even if AV 

technology is found to be effective as a learning aid, a whole host of other considerations could figure equally 

prominently in an overall assessment of effectiveness.  For example, how long did it take to prepare and set up the 

AV technology?  Given the choice between using conventional materials and AV technology, which will instructors 

choose, and what considerations do they deem important in making that choice? In his ethnographic fieldwork, 

Hundhausen [5] began to address these questions within the broader scope of an undergraduate algorithms course. 

Other scenarios. Although AV has applications outside of educational scenarios—for example, in algorithms 

analysis and software engineering—our meta-study has neglected those scenarios.  We are, in fact, unaware of a 

body of research that has empirically evaluated AV technology in non-educational scenarios. We suspect that this is 

because such research does not, in fact, exist.  The empirical evaluation of AV effectiveness in non-educational sce-

narios is thus an important open area of research. 

Notice also that AV is a subarea of software visualization, which encompasses not only the visualization of al-

gorithms, but also the visualization of entire software systems. Visualizations of software systems are designed to 

help members of programming teams do such things as improve system performance [51], comprehend the structure 
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and evolution of software systems [52], and track down bugs [53]. A future meta-study would do well to consider the 

effectiveness of software visualization in such industrial scenarios. Pertinent guiding questions include:  

• To what extent has software visualization been effectively applied in industry?  

• Has software visualization increased productivity?  

• Has software visualization benefited the large software teams typical in industry?   

• Has software visualization benefited the kinds of distributed programming teams that are common today?  

Our suspicion is that few empirical studies that address such questions have been published. If this is indeed 

true, then an important direction for future research is to subject industrial software visualization systems to the same 

kind of systematic effectiveness evaluation that educational AV technology has undergone.  

Acknowledgments 

The first author wrote an early version of this paper as part of his Ph.D. comprehensive exam in the Computer 

and Information Science Department at the University of Oregon, and gratefully acknowledges the inspiration and 

astute guidance of his then-advisor, Sarah Douglas. 

References 

1. R. Baecker (1975) Two systems which produce animated representations of the execution of computer pro-
grams. SIGCSE Bulletin 7, 158-167. 

2. M. H. Brown (1988) Algorithm animation The MIT Press,  Cambridge, MA. 

3. J. T. Stasko (1990) TANGO:  A framework and system for algorithm animation. IEEE Computer 23, 27-39. 

4. J. T. Stasko (1997) Using student-built animations as learning aids. In: Proceedings of the ACM Technical 
Symposium on Computer Science Education ACM Press, New York, pp. 25-29. 

5. C. D. Hundhausen (1999) Toward effective algorithm visualization artifacts:  Designing for participation and 
communication in an undergraduate algorithms course. Unpublished Ph.D. Dissertation, Department of Com-
puter and Information Science, University of Oregon. 

6. P. Gloor (1998) Animated algorithms. In: Software visualization:  Programming as a multimedia experience 
(M. Brown, J. Domingue, B. Price, and J. Stasko, eds.) The MIT Press, Cambridge, MA, pp. 409-416. 

7. J. S. Gurka & W. Citrin (1996) Testing effectiveness of algorithm animation. In: Proceedings of the 1996 IEEE 
Symposium on Visual Languages IEEE Computer Society Press, Los Alamitos, CA, pp. 182-189. 

8. T. Naps (1990) Algorithm visualization in computer science laboratories. In: Proceedings of the 21st SIGCSE 
Technical Symposium on Computer Science Education ACM Press, New York, pp. 105-110. 



www.manaraa.com

28  C.D. HUNDHAUSEN, S.A. DOUGLAS , & J.T. STASKO  

 

9. R. Baecker (1998) Sorting out sorting:  A case study of software visualization for teaching computer science. 
In: Software Visualization:  Programming as a Multimedia Experience (M. Brown, J. Domingue, B. Price, and 
J. Stasko, eds.) The MIT Press, Cambridge, MA, pp. 369-381. 

10. R. Duisberg (1987) Visual programming of program visualizations. In: Proceedings of the IEEE 1987 Visual 
Language Workshop IEEE Computer Society Press, Los Alamitos, CA. 

11. E. Helttula, A. Hyrskykari, & K.-J. Raiha (1989) Graphical specification of algorithm animations with 
ALLADDIN. In: Proceedings of the 22nd Annual Conference on Systems Sciences pp. 892-901. 

12. J. T. Stasko (1991) Using Direct Manipulation to Build Algorithm Animations by Demonstration. In: Proceed-
ings of ACM CHI'91 Conference on Human Factors in Computing Systems ACM Press, New York, pp. 307-
314. 

13. A. W. Lawrence, A. N. Badre, & J. T. Stasko (1994) Empirically evaluating the use of animations to teach al-
gorithms. In: Proceedings of the 1994 IEEE Symposium on Visual Languages IEEE Computer Society Press, 
Los Alamitos, CA, pp. 48-54. 

14. S. R. Hansen, N. H. Narayanan, & D. Schrimpsher (2000) Helping learners visualize and comprehend algo-
rithms. Interactive Multimedia Electronic Journal of Computer-Enhanced Learning 1. 

15. J. Stasko, A. Badre, & C. Lewis (1993) Do Algorithm Animations Assist Learning?  An Empirical Study and 
Analysis. In: Proceedings of ACM INTERCHI'93 Conference on Human Factors in Computing Systems ACM 
Press, New York, pp. 61-66. 

16. A. W. Lawrence (1993) Empirical studies of the value of algorithm animation in algorithm understanding. Un-
published Ph.D. dissertation,  Department of Computer Science, Georgia Institute of Technology. 

17. M. D. Byrne, R. Catrambone, & J. T. Stasko (1999) Evaluating animations as student aids in learning computer 
algorithms. Computers & Education 33, 253-278. 

18. B. A. Price, R. M. Baecker, & I. S. Small (1993) A principled taxonomy of software visualization. Journal of 
Visual Languages and Computing 4, 211-266. 

19. J. Bazik, R. Tamassia, S. Reiss, & A. van Dam (1998) Software visualization in teaching at Brown University. 
In: Software Visualization:  Programming as a Multimedia Experience (M. Brown, J. Domingue, B. Price, and 
J. Stasko, eds.) The MIT Press, Cambridge, MA, pp. 383-398. 

20. J. S. Gurka (1996) Pedagogic Aspects of Algorithm Animation. Unpublished Ph.D. Dissertation, Computer 
Science, University of Colorado. 

21. D. R. Goldenson & B. J. Wang (1991) Use of Structure Editing Tools by Novice Programmers. In: Empirical 
Studies of Programmers: Fourth Workshop pp. 99-120. 

22. K. C. Cox & G. C. Roman, "An evaluation of the Pavane visualization system," Department of Computer Sci-
ence, Washington University in St. Louis, St. Louis, MO, Technical report WUCS-94-09, April, 1994 1994. 

23. J. Nielsen (1992) Finding usability problems through heuristic evaluation. In: Proceedings of ACM CHI'92 
Conference on Human Factors in Computing Systems pp. 373-380. 

24. P. G. Polson, C. Lewis, J. Rieman, & C. Wharton (1992) Cognitive Walkthroughs: A Method for Theory-
Based Evaluation of User Interfaces. International Journal of Man-Machine Studies 36, 741-773. 



www.manaraa.com

A META-STUDY OF ALGORITHM VISUALIZATION EFFECTIVENESS 29 

25. D. J. Gilmore (1990) Methodological issues in the study of programming. In: Psychology of Programming (J.-
M. Hoc, T. R. G. Green, R. Samurcay, and D. J. Gilmore, eds.) Academic Press, San Diego, pp. 83-98. 

26. B. Price (1990) A framework for the automatic animation of concurrent programs. Unpublished M.S. Thesis, 
Department of Computer Science, University of Toronto. 

27. P. Mulholland (1998) A principled approach to the evaluation of SV:  a case study in Prolog. In: Software 
visualization:  Programming as a multimedia experience (M. Brown, J. Domingue, B. Price, and J. Stasko, 
eds.) The MIT Press, Cambridge, MA, pp. 439-452. 

28. M. E. Crosby & J. Stelovsky (1995) From multimedia instruction to multimedia evaluation. Journal of Educa-
tional Multimedia and Hypermedia 4, 147-162. 

29. L. V. Hedges & I. Olkin (1985) Statistical Methods for Meta-Analysis. Academic Press., Orlando. 

30. C. Chen & Y. Yu (2000) Empirical studies of information visualization: a meta-analysis. international Journal 
of Human-Computer Studies 53, 851-866. 

31. C. D. Hundhausen & S. A. Douglas (2000) Using visualizations to learn algorithms: Should students construct 
their own, or view an expert's? In: Proceedings 2000 IEEE International Symposium on Visual Languages 
IEEE Computer Society Press, Los Alamitos, pp. 21-28. 

32. D. J. Jarc, M. B. Feldman, & R. S. Heller (2000) Assessing the benefits of interactive prediction using web-
based algorithm animation courseware. In: Proceedings SIGCSE 2000 ACM Press, New York, pp. 377-381. 

33. C. Kann, R. W. Lindeman, & R. Heller (1997) Integrating algorithm animation into a learning environment. 
Computers & Education 28, 223-228. 

34. E. Wenger (1987) Artificial Intelligence and Tutoring Systems Morgan Kaufmann, Los Altos, CA. 

35. J. Roschelle, "Designing for conversations," presented at AAAI Symposium on Knowledge-Based Environ-
ments for Learning and Teaching, Stanford, CA, 1990. 

36. A. Newell & H. A. Simon (1972) Human Problem Solving Prentice-Hall, Englewood Cliffs. 

37. R. E. Mayer & R. B. Anderson (1991) Animations need narrations:  An experimental test of a dual-coding hy-
pothesis. Journal of Educational Psychology 83, 484-490. 

38. A. Paivio (1983) The empirical case for dual coding. In: Imagery, memory,  and cognition:  essays in honor of 
Allan Paivio (J. C. Yuille, ed.) Lawrence Erlbaum Associates, Hillsdale, NJ. 

39. C. Cooper (1997) Individual Differences Oxford Illustrated Press, Oxford. 

40. R. Riding & S. Rayner (1998) Cognitvie Styles and Learning Strategies David Fulton Publishers, London. 

41. L. B. Resnick (1989) Introduction. In: Knowing, Learning, and Instruction:  Essays in Honor of Robert Glaser 
(L. B. Resnick, ed.) Erlbaum, Hillsdale, NJ, pp. 1-24. 

42. C. Kehoe, J. T. Stasko, & A. Taylor (2001) Rethinking the evaluation of algorithm animations as learning aids: 
an observational study. International Journal of Human-Computer Studies 54, 265-284. 

43. L. A. Suchman (1987) Plans and Situated Actions: The Problem of Human-Machine Communication Cam-
bridge University Press, New York, 203+xiv pp. 



www.manaraa.com

30  C.D. HUNDHAUSEN, S.A. DOUGLAS , & J.T. STASKO  

 

44. J. Lave & E. Wenger (1991) Situated Learning:  Legitimate Peripheral Participation Cambridge University 
Press, New York, 138 pp. 

45. S. A. Douglas, C. D. Hundhausen, & D. McKeown (1996) Exploring human visualization of computer algo-
rithms. In: Proceedings 1996 Graphics Interface Conference Canadian Graphics Society, Toronto, CA, pp. 9-
16. 

46. J. Rubin (1994) Handbook of Usability Testing John Wiley and Sons, New York. 

47. R. Sanjek (1995) Ethnography. In: Encyclopedic dictionary of social and cultural anthropology (A. Barnard 
and J. Spencer, eds.) Raitledge, London. 

48. W. Foddy (1994) Constructing Questions for Interviews and Questionnaires: Theory and Practice in Social 
Research Cambridge University Press, Cambridge. 

49. D. Lavery & G. Cockton, "A Pilot Study of Early Usability Evaluation Methods for Software Visualisations," 
University of Glasgow, Glasgow, Scotland, FIDE Technical Report FIDE/95/141, 1995. 

50. A. Badre, M. Baranek, J. M. Morris, & J. T. Stasko (1992) Assessing program visualization systems as instruc-
tional aids. In: Computer Assisted Learning, ICCAL '92 (I. Tomek, ed.) Springer-Verlag, New York, pp. 87-99. 

51. D. Kimelman, B. Rosenburg, & T. Roth (1994) Strata-Various:  Multi-layer visualization of dynamics in soft-
ware system behavior. In: Proceedings Visualization '94 IEEE Computer Society Press, Los Alamitos, CA, pp. 
172-178. 

52. M. J. Baker & S. G. Eick (1995) Space-filling software visualization. Journal of Visual Languages and Com-
puting 6, 119-133. 

53. T. Shimomura & S. Isoda (1991) Linked-list visualization for debugging. IEEE Software 8, 44-51. 

54. B. A. Myers (1990) Taxonomies of visual programming and program visualization. Journal of Visual Lan-
guages and Computing 1, 97-123. 

55. N. C. Shu (1988) Visual programming Van Nostrand Reinhold, New York. 

56. M. H. Brown (1988) Perspectives on algorithm animation. In: Proceedings of the ACM SIGCHI '88 Conver-
ence on Human Factors in Computing Systems ACM Press, New York, pp. 33-38. 

57. J. T. Stasko & C. Patterson (1992) Understanding and characterizing software visualization systems. In: Pro-
ceedings of the 1992 IEEE Symposium on Visual Languages IEEE Computer Society Press, Los Alamitos, CA, 
pp. 3-10. 

58. G. Singh & M. H. Chignell (1992) Components of the visual computer:  A review of relevant technologies. 
Visual Computer 9, 115-142. 

59. E. Kraemer & J. T. Stasko (1993) The visualization of parallel systems:  An overview. Journal of Parallel and 
Distributed Computing 18, 105-117. 

60. G. C. Roman & K. C. Cox (1993) A taxonomy of program visualization systems. IEEE Computer 26, 11-24. 



www.manaraa.com

A META-STUDY OF ALGORITHM VISUALIZATION EFFECTIVENESS 31 

Tables 

 

SV TAXONOMY DESCRIPTIVE DIMENSIONS 

Myers, [54] Aspect (code, data, algorithms) × Form (static, animated) 

Shu [55] What is visualized (data or information about data, program and/or execution, software design) 

Brown [56] Content (direct, synthetic) × Persistence (current, history) × Transformation (incremental, discrete) 

Stasko & Patterson [57] Aspect × Abstractness × Animation × Automation 

Singh & Chignell [58] What is visualized (program, algorithm, data) × Form (static, dynamic) 

Kraemer & Stasko [59] Visualization task (data collection, data analysis, storage, display) × Visualization purpose (debug-

ging, performance evaluation or optimization, program visualization) 

Roman & Cox [60] Scope × Abstraction × Specification method × Interface × Presentation 

Price et al. [18] Scope × Content × Form × Method × Interaction × Effectiveness 

Table 1. The descriptive dimensions of the eight extant taxonomies of AV and software visualization 
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STUDY INDEP. VAR. DEPEND. VAR. KEY RESULTS 
Price [26] • Debugging medium (debugging with animated view vs. 

debugging without animated view) 
• Debugging time 
• Whether bug found 

• No significant differences were found. 

Stasko et al. [15] • Learning medium (text only vs. text-and-animation) • Post-test accuracy • Non-significant trend was found favoring the text-and-animation group 
(t=1.111, df=18,p<0.13) 

Lawrence [16] 
Ch. 4.4 

• Data set size (9, 25, or 41 elements) 
• Data representation style (horizontal/vertical sticks, dots) 

• Post-test accuracy • No significant differences were found 

Lawrence [16]  
Ch. 5 

• Order of algorithm presentation (Quick sort first vs. 
Selection sort first) 

• Data representation style (labeled vs. unlabeled) 
• Covariates: Spatial and verbal abilities  

• Post-test accuracy 
• Time to take post-test 

• No significant differences were found 
• Spatial and verbal abilities not correlated with performance 

Lawrence [16]  
Ch. 6 

• Level of learner involvement (study text/passively view 
animation vs. study text /actively view by constructing 
own input data sets)  

• Post-test accuracy 
• Time to take post-test 

• Participants who viewed animations for which they constructed their 
own data sets scored significantly higher on post-test 

Lawrence [16]  
Ch. 7 

• Representation color  (color vs. black-and-white) 
• Representation labeling (algorithmic step labels vs. no 

labels) 

• Post-test accuracy 
• Accuracy on a transfer 

task 

• Participants who viewed black-and-white animations scored signfi-
cantly higher  

• Participants who viewed labeled animations scored significantly higher  
Lawrence [16]  
Ch. 8 

• Order of medium (text-first vs. animation-first) 
• Order of algorithm presentation (selection sort first vs. 

Kruskal MST first) 

• Post-test accuracy • No significant differences detected 

Lawrence [16]  
Ch. 9 

• Learning medium/Level of learner involvement (lecture-
only vs. lecture + passively view animation vs. lecture + 
actively view animation by constructing own input data 
sets) 

• Free-response post-test 
accuracy 

• Multiple choice/true-
false post-test accuracy 

• On free-response post-test, participants who heard lecture and actively 
viewed animation significantly outperformed students who only heard 
lecture 

Crosby & Ste-
lovsky [28] 

• Learning medium (lecture vs. multimedia) 
• Cognitive style (S/Concrete vs. N/abstract) 
• Test question type (text vs. graphics) 

• Pre- to Post-test 
improvement 

• Participants who learned with multimedia significantly outperformed 
participants who learned through the lecture 

• Significant interaction effect between cognitive style and learning 
medium: "S" participants performed significantly better with multimedia   

Byrne, et al. [17] 
Study I 

• Learning medium (animation vs. no-animation) 
• Interactive prediction  (predict the next algorithm step vs. 

no prediction) 

• Post-test accuracy 
• Prediction accuracy 

• On post-test's "hard" questions, participants who viewed the animation 
and/or made predictions performed significantly better than participants 
who did neither.   

Byrne, et al. [17] 
Study II 

• Same as previous • Same as previous • Same as previous, except that difference was detected on post-test's 
"procedural" questions, 

Gurka [20] • Learning medium (animation vs. no-animation)  (Note: 
This experiment was an attempt to improve upon a porton 
of the Byrne, Catrambone, and Stasko [17] experiment) 

• Post-test accuracy   
 

• No significant differences were found between the two groups 
• Animation group appeared to be highly motivated by the animation  

Kann et al. [33] • Level of learner involvement (program algorithm vs. 
program algo./construct animation vs. program algo./view 
anim. vs. program algo./view anim./construct anim.) 

• Programming accuracy 
• Post-test accuracy 

• Participants who viewed animation scored significantly higher on post-
test than participants who did not view animation 

 
Mulholland [27] • Tracing medium (three textual tracers, TPM) • Number of problems 

solved (5 minute max 
per problem) 

• Participants who used the graphical tracer (TPM) solved significantly 
fewer problems than participants who used the textual tracers (Spy, 
PTP, TTT) 

Hansen et al. [14] 
Study I 

• Learning medium (HalVis hypermedia vs. text-only) • Pre to Posttest im-
provement (pseudocode 
reordering, algo. op.. 
simulation, and predic-
tion tasks) 

• Participants who learned with HalVis significantly outperformed 
participants who used text-only 

Hansen et al. [14] 
Study II 

• Learning medium (HalVis hypermedia vs. text-only) • Same as previous • Participants who learned with HalVis significantly outperformed 
participants who used text-only 

Hansen et al. [14] 
Study III 

• Learning medium (HalVis hypermedia vs. carefully-
selected text + problem-solving exercises) 

• Same as previous • No significant differences detected 

Hansen et al. [14] 
Study IV 

• Learning medium (HalVis hypermedia vs lecture) • Same as previous • Participants who learned with HalVis significantly outperformed 
participants who viewed lecture 

Hansen et al. [14] 
Study V 

• Learning medium (HalVis hypermedia vs. text + actively 
view animation by selecting own input data sets) 

• Same as previous • Participants who learned with HalVis significantly outperformed 
participants who read text and interacted with XTango 

Hansen et al. [14] 
Study VI 

• Combination of HalVis features (full HalVis vs. HalVis 
without animation chunking vs. HalVis without pseu-
docode step highlighting vs. HalVis without interactive 
questions) 

• Same as previous • No significant differences detected 

Hansen et al. [14] 
Study VII 

• Combination of HalVis views  (Concep-
tual/Detailed/Populated vs. Conceptual/Detailed vs. Con-
ceptual/Populated  vs. Detailed/Populated) 

• Same as previous • Partipants who interacted with Conceptual View significantly outper-
formed participants who did not interact with the Conceptual View 

Hansen et al. [14] 
Study VIII 

• Combination of HalVis views  (Concep-
tual/Detailed/Populated vs. Conceptual only  vs Detailed 
only  vs. Populated only) 

• Same as previous • Participants who had access to (a) all three HalVis views, or (b) the 
Detailed View, significantly outperformed the Conceptual View and 
Populated View groups 

• Conceptual View group significantly outperformed the Populated View 
group 

Hundhausen & 
Douglas [31] 

• Level of Learner Involvement (Self-construct visualiza-
tions vs. actively view pre-defined visualizations) 

• Accuracy and time on 
tracing and program-
ming tasks 

• No significant differences were detected  

Jarc et al. [32] • Interactive prediction (use animation software that enbles 
prediction of next algorithm step  vs. use animation soft-
ware with no prediction)  

• Post-test at end of 3 
weekly lab sessions 

• Learning time  

• No significant differences were detected on post-test 
• The prediction group spent significantly more time using the animation 

software than the no-prediction group 

Table 2.  Summary of controlled experiments that consider AV effectiveness 
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THEORY SYNOPSIS  ROLE OF AV 

Epistemic 
Fidelity 

Graphics have an excellent ability to encode an expert’s mental 
model, leading to the robust, efficient transfer of that mental model 
to viewers 

Encoding of knowledge 

Dual Coding Representations with dually-coded information  (e.g., graphics and 
text) promote the most robust and  efficient knowledge transfer  

Encoding of knowledge 

Individual  
Differences 

Differences in human cognitive abilities and learning styles enable 
some to benefit from SV more than others 

Unspecified, but “encoding  of knowl-
edge”  fits in well with the theory 

Cognitive  
Constructivism 

Active engagement with SV enables one to construct one’s own 
understanding 

Resource for knowledge construction   

Table 3.  Juxtaposition of the four theories of effectiveness 

 

EPISTEMIC FIDELITY DUAL CODING INDIVIDUAL DIFFERENCES COGNITIVE CONSTRUCTIVISM  
Price [26] Lawrence [16] Ch. 5 Lawrence [16] Ch. 5 Stasko et al. [15] 
Lawrence [16] Ch. 4.4 Lawrence [16] Ch. 7 Crosby & Stelovsky [28] Lawrence [16] Ch. 6 
Lawrence [16] Ch. 7   Lawrence [16] Ch. 9 
Lawrence [16] Ch. 8   Crosby & Stelovsky [28] 
Gurka [20]   Byrne et al. [17] Study I 
Mulholland [27]   Byrne et al. [17] Study II 
Hansen et al. [14] Study III   Kann et al. [33] 
Hansen et al [14] Study VI   Hansen et al. [14] Study I 
Hansen et al. [14] Study VII   Hansen et al. [14] Study II 
Hansen et al [14] Study VIII   Hansen et al. [14] Study IV 
   Hansen et al. [14] Study V 
   Hansen et al. [14], Study VI 
   Hundhausen & Douglas [31] 
   Jarc et al. [32] 

Table 4. The experimental studies vis-à-vis the effectiveness theories they were designed to support 

 

EFFORT EQUIVALENT EFFORT NOT EQUIVALENT 
Price [26] Stasko et al. [15] 
Lawrence [16] Ch. 4.4) Lawrence [16] Ch. 6 
Lawrence [16] Ch. 5 Lawrence [16] Ch. 9 
Lawrence [16] Ch. 7 Crosby & Stelovsky [28] 
Lawrence [16] Ch. 8 Byrne et al. [17] Study I 
Gurka [20] Byrne et al. [17] Study II 
Mulholland [27] Kann et al. [33] 
Hansen et al. [14] Study III Hansen et al. [14] Study I 
Hansen et al. [14] Study VII Hansen et al. [14] Study II 
Hansen et al [14] Study VIII Hansen et al. [14] Study IV 
 Hansen et al. [14] Study V 
 Hansen et al. [14] Study VII 
 Hundhausen & Douglas [31] 
 Jarc et al. [32] 

Table 5. Classification of experiments based on the equivalence of the effort required to perform the activities in 
competing treatment groups 
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CONCEPTUAL AND PROCEDURAL  CONCEPTUAL ONLY PROCEDURAL ONLY 
Stasko et al. [15] Lawrence [16] Ch. 7 Lawrence [16] Ch. 7 
Lawrence [16] Ch. 4.4 Lawrence [16] Ch. 9 Lawrence [16] Ch. 8 
Lawrence [16] Ch. 5 Byrne et al. [17] Study II Crosby & Stelovsky [28] 
Lawrence [16] Ch. 6  Kann et al. [33] 
Lawrence [16] Ch. 9  Byrne et al. [17] Study I 
Gurka [20]  Byrne et al. [17] Study II 
Kann et al. [33]  Hundhausen & Douglas [31] 
Jarc et al. [32]  Hansen et al. [14] Study I 
  Hansen et al. [14] Study II 
  Hansen et al. [14] Study III 
  Hansen et al. [14] Study IV 
  Hansen et al. [14] Study V 
  Hansen et al. [14] Study VI 
  Hansen et al. [14] Study VII 
  Hansen et al. [14] Study VIII 

Table 6. Classification of experimental studies based on the type of knowledge required to answer the questions on 
their evaluation instruments. Note that some studies are listed more than once, because they employed multiple 

measurement instruments. 

 

POST-TEST ONLY PRE- TO POST-TEST IMPROVEMENT 
Stasko et al. [15] Crosby & Stelovsky [28] 
Lawrence [16] Ch. 4.4 Lawrence [16] Ch. 5 
Lawrence [16] Ch. 5 Hansen et al. [14] Study II 
Lawrence [16] Ch. 6 Hansen et al. [14] Study III 
Lawrence [16] Ch. 7 Hansen et al. [14] Study IV 
Lawrence [16] Ch. 8 Hansen et al. [14] Study V 
Lawrence [16] Ch. 9 Hansen et al. [14] Study VI 
Gurka [20] Hansen et al. [14] Study VII 
Kann et al. [33] Hansen et al. [14] Study VIII 
Byrne et al. [17] Study I  
Byrne et al. [17] Study II  
Hundhausen & Douglas [31]  
Jarc et al. [32]  

Table 7. Classification of experimental studies based on their method of measuring learning 

 

 

 

THEORY SYNOPSIS  ROLE OF AV 

Situated Action AV is a communicative resource for building a 
shared understanding of algorithms 

Communicative resource akin to speech, gesture, and 
gaze 

Sociocultural Con-
structivism 

AV enable people to participate in a community in 
increasingly central ways 

Community artifacts that grant access to central com-
munity activities 

Table 8.  Two alternative theories of effectiveness that appear to be promising avenues for future research 
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Figures 

 

 Scenarios of AV use in Education 

AV for 
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Figure 1. A taxonomy of scenarios of AV use in education 
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Figure 2.  A taxonomy of methods for evaluating AV effectiveness 
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Figure 3. Summary of the results of the 24 experiments in our corpus 
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Figure 4. A schematic of epistemic fidelity theory’s view of knowledge transfer 
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Figure 5.  Experimental results vis-à-vis theory of effectiveness. Total number of experiments (height of hollow 

bar), number of experiments yielding significant results (height of filled-in bar), and percentage of experiments yield-
ing significant results (proportion of hollow bar that is filled-in) in each of four general categories of experiments, 

classified by their underlying theory of effectiveness. 
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Figure 6.  Results of experimental studies vis-à-vis activity effort classification of Table 5 
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Figure 7.  Experimental results vis-à-vis type of knowledge tested 
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Figure 8. Experimental results vis-à-vis two alternative methods for evaluating learning 

 


